sage: If = f.integrate(x)
sage: If
x*arctan(sqrt(x)) - sqrt(x) + arctan(sqrt(x))
sage: show(If)
sage: latex(If)
x \arctan\left(\sqrt{x}\right) - \sqrt{x} + \arctan\left(\sqrt{x}\right)
At this point you should check the Typeset box at the top of this worksheet.
sage: DIf = If.differentiate(x)
sage: f - DIf
sage: (f - DIf).simplify_full()
sage: f = x*cos(x)^2
sage: f
sage: plot(f)
sage: p = plot(f, xmin=-1, xmax=3.5, ymin=-0.5, ymax=3.5, aspect_ratio=.5, gridlines=True, color='purple', thickness=10, alpha=0.2, figsize=6)
sage: p
sage: p.save('plot.pdf')
sage: plotf = plot(f, (x,-1,3.5), color='purple', thickness=3)
sage: origin = point((0,0), color='orange', alpha=.7, size=150)
sage: label = 'MacLaurin polynomial of $%s$ of degree'%latex(f)
sage: @interact
sage: def foo(j=slider(0, 20, 1, default=3, label=label)):
... Tjf = f.taylor(x, 0, j)
... plotTjf = plot(Tjf, (x,-1,3.5), color='green', thickness=1.5, fill=f)
... html('$%s$'%latex(Tjf))
... show(plotf + plotTjf + origin, ymin=-0.5, ymax=3.5, figsize=[7,3])
MacLaurin polynomial of $x \cos\left(x\right)^{2}$ of degree |
|
|
|
| |
|
|
sage: frames = []
sage: for j in range(-1, 21, 2):
... Tjf = f.taylor(x, 0, j)
... plotTjf = plot(Tjf, (x,-1,3.5), color='green', thickness=1.5, fill=f)
... t = text('$%s$'%latex(Tjf), (3,-0.8), color='black', horizontal_alignment='right')
... frames.append(t + plotf + plotTjf + origin)
...
sage: a = animate(frames, ymin=-0.5, ymax=3.5, figsize=[7,3])
sage: a.show(delay=40, iterations=4)
sage: var('x, y, z')
sage: f = x^2 + y^2 + z^2 + cos(4*x) + cos(4*y) + cos(4*z)
sage: c = 0.2
sage: implicit_plot3d(f==c, (x, -1.2, 1.2), (y, -1.2, 1.2), (z, -1.2, 1.2))
sage: implicit_plot3d(f==c, (x, -1.2, 1.2), (y, -1.2, 1.2), (z, -1.2, 1.2), opacity=2/3) + dodecahedron((0,0,0), 1/2, color="purple", opacity=2/3)
Solving equations
sage: solve(x^3 + 6*x == 20, x)
sage: solve(x^4 + 6*x == 20, x)[0]
sage: solve(x^5 + 6*x == 20, x)
sage: find_root(x^5 + 6*x == 20, 0, 1)
Traceback (most recent call last):
...
RuntimeError: f appears to have no zero on the interval
sage: find_root(x^5 + 6*x == 20, 0, 2)
sage: var('x, y, z')
sage: solve([x + 3*y - 2*z == 5, 3*x + 5*y + 6*z == 7], x, y, z)
sage: A = matrix([[1, 3, -2], [3, 5, 6]])
sage: v = vector([5, 7])
sage: A.solve_right(v)
sage: A.right_kernel()
sage: Av = A.augment(v)
sage: Av.echelon_form()
sage: type(Av)
sage: Av = Av.change_ring(QQ)
sage: type(Av); Av.echelon_form()
Playing with finite groups
Unckeck the Typeset box now, please.
sage: S4 = SymmetricGroup(4)
sage: S4
Symmetric group of order 4! as a permutation group
sage: show(S4)
sage: S4.conjugacy_classes_representatives()
[(), (1,2), (1,2)(3,4), (1,2,3), (1,2,3,4)]
sage: len(S4.conjugacy_classes_representatives()), len(S4.subgroups()), len(S4.conjugacy_classes_subgroups()), len(S4.normal_subgroups())
(5, 30, 11, 4)
sage: u = S4( (1,2,3,4) )
sage: v = S4( (2,4) )
sage: w = S4( ((1,2),(3,4)) )
sage: u.order(), u*v, w==u^-1*v
(4, (1,4)(2,3), True)
sage: G = S4.subgroup([u, v])
sage: G.order(), G.is_abelian(), G.center().order(), G.is_isomorphic(DihedralGroup(4))
(8, False, 2, True)
sage: (1,4) in G, (1,3) in G
(False, True)
sage: G.cayley_graph(generators=[u, v]).show(color_by_label=True)
sage: G.cayley_graph(generators=[v, w]).show(color_by_label=True)
sage: T = G.cayley_table()
sage: T
* a b c d e f g h
+----------------
a| a b c d e f g h
b| b a d c f e h g
c| c g a e d h b f
d| d h b f c g a e
e| e f g h a b c d
f| f e h g b a d c
g| g c e a h d f b
h| h d f b g c e a
sage: T.translation()
{'a': (), 'c': (1,2)(3,4), 'b': (2,4), 'e': (1,3), 'd': (1,2,3,4), 'g': (1,4,3,2), 'f': (1,3)(2,4), 'h': (1,4)(2,3)}
sage: from sage.matrix.operation_table import OperationTable
sage: def commutator(h, g): return h*g*h^-1*g^-1
sage: OperationTable(G, commutator)
. a b c d e f g h
+----------------
a| a a a a a a a a
b| a a f f a a f f
c| a f a f f a f a
d| a f f a f a a f
e| a a f f a a f f
f| a a a a a a a a
g| a f f a f a a f
h| a f a f f a f a
Minimal free resolutions of monomial ideals
sage: R. = PolynomialRing(QQ)
sage: I = R.ideal([a*c, b*d, a*e, d*e])
sage: R; I
Multivariate Polynomial Ring in a, b, c, d, e over Rational Field
Ideal (a*c, b*d, a*e, d*e) of Multivariate Polynomial Ring in a, b, c, d, e over Rational Field
sage: I.syzygy_module()
[ -e 0 c 0]
[ 0 -e 0 b]
[ 0 0 -d a]
[-b*d a*c 0 0]
sage: singular.mres(I, 0)
[1]:
_[1]=d*e
_[2]=a*e
_[3]=b*d
_[4]=a*c
[2]:
_[1]=c*gen(2)-e*gen(4)
_[2]=b*gen(1)-e*gen(3)
_[3]=a*gen(1)-d*gen(2)
_[4]=a*c*gen(3)-b*d*gen(4)
[3]:
_[1]=a*c*gen(2)-b*c*gen(3)-b*d*gen(1)+e*gen(4)
[4]:
_[1]=0
[5]:
_[1]=gen(1)
And don’t forget the SageTeX example! $\infty$