Let \mathbb{Z} denote the set of all integers, and let $\mathbb{P}=\{2,3,5,7,11,13,17, \ldots\}$ denote the set of all prime numbers. In this homework assignment you will be guided through a topological proof of the well-known fact that there are infinitely many primes, i.e., that \mathbb{P} is an infinite set.

Definition. For any $c, d \in \mathbb{Z}$ with $d>0$, let $A P_{c, d}=\{c+n d \mid n \in \mathbb{Z}\}$ be the infinite arithmetic progression with initial term c and common difference d. Define $\mathcal{B}=\left\{A P_{c, d} \mid c, d \in \mathbb{Z}, d>0\right\}$.

Prove the following three lemmas.
Lemma 1. The set \mathcal{B} is a basis for a topology on \mathbb{Z}.
Let's consider \mathbb{Z} together with the topology generated by \mathcal{B}.
Lemma 2. Every non-empty open set of \mathbb{Z} is infinite.
Lemma 3. For any $c, d \in \mathbb{Z}$ with $d>0$, the set $A P_{c, d}$ is closed.
Now consider $X=\mathbb{Z}-\left(\bigcup_{p \in \mathbb{P}} A P_{0, p}\right)$. What exactly is the set X ? Is X open?
From all this, deduce the following statement.
Theorem 4. There are infinitely many primes.

