Let \mathbb{Z} denote the set of all integers, and let $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, ...\}$ denote the set of all prime numbers. In this homework assignment you will be guided through a topological proof of the well-known fact that there are infinitely many primes, i.e., that \mathbb{P} is an infinite set.

Definition. For any $c, d \in \mathbb{Z}$ with d > 0, let $AP_{c,d} = \{c + nd \mid n \in \mathbb{Z}\}$ be the infinite arithmetic progression with initial term c and common difference d. Define $\mathcal{B} = \{AP_{c,d} \mid c, d \in \mathbb{Z}, d > 0\}$.

Prove the following three lemmas.

Lemma 1. The set \mathcal{B} is a basis for a topology on \mathbb{Z} .

Let's consider \mathbb{Z} together with the topology generated by \mathcal{B} .

Lemma 2. Every non-empty open set of \mathbb{Z} is infinite.

Lemma 3. For any $c, d \in \mathbb{Z}$ with d > 0, the set $AP_{c,d}$ is closed.

Now consider $X = \mathbb{Z} - \left(\bigcup_{p \in \mathbb{P}} AP_{0,p}\right)$. What exactly is the set X? Is X open?

From all this, deduce the following statement.

Theorem 4. There are infinitely many primes.