Name:

First problem.

For each of the following six questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!

1. Let $f: X \rightarrow Y$ be a function. Let x and x^{\prime} be elements of X such that $f(x)=f\left(x^{\prime}\right)$.

What do we need to know about f to conclude that $x=x^{\prime}$? \qquad
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
2. Let $f: X \rightarrow Y$ be a function. Let x and x^{\prime} be elements of X such that $x=x^{\prime}$. What do we need to know about f to conclude that $f(x)=f\left(x^{\prime}\right)$? \qquad
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
3. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.

What do we need to know about f to conclude that $y=f(x)$ for some $x \in X$? \qquad
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
4. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.

What do we need to know about f to conclude that $y=f(x)$ for exactly one $x \in X$? \qquad
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
5. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.

What do we need to know about f to conclude that $y=f(x)$ for at most one $x \in X$? \square
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
6. Let $f: X \rightarrow Y$ be a function. Let x be an element of X.

What do we need to know about f to conclude that $f(x)=y$ for exactly one $y \in Y$? $\ldots \ldots \ldots \ldots . \square$
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

Second problem.

Let X and Y be sets, and $\varphi: X \rightarrow Y$ a function. Suppose that W is a subset of X and Z is a subset of Y. Write the definitions of $\varphi(W)$ and of $\varphi^{-1}(Z)$.

Third problem.

Let A and B be sets, and let $f: A \rightarrow B$ be a function.
Suppose that A^{\prime} and $A^{\prime \prime}$ are subsets of A, and that B^{\prime} is a subset of B.
Are the following implications true or false? Prove or disprove them.

$$
\begin{equation*}
B^{\prime} \subset f\left(A^{\prime} \cap A^{\prime \prime}\right) \quad \Rightarrow \quad B^{\prime} \subset f\left(A^{\prime}\right) \text { and } B^{\prime} \subset f\left(A^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

TRUE | FALSE

$$
\begin{equation*}
B^{\prime} \subset f\left(A^{\prime}\right) \text { and } B^{\prime} \subset f\left(A^{\prime \prime}\right) \quad \Rightarrow \quad B^{\prime} \subset f\left(A^{\prime} \cap A^{\prime \prime}\right) \tag{2}
\end{equation*}
$$

