Name:

First problem.

For each of the following six questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!

1. Let $f: X \to Y$ be a function. Let x and x' be elements of X such that f(x) = f(x'). What do we need to know about f to conclude that x = x'? A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 2. Let $f: X \to Y$ be a function. Let x and x' be elements of X such that x = x'. What do we need to know about f to conclude that f(x) = f(x')? A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 3. Let $f: X \to Y$ be a function. Let y be an element of Y. What do we need to know about f to conclude that y = f(x) for some $x \in X$? A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 4. Let $f: X \to Y$ be a function. Let y be an element of Y. What do we need to know about f to conclude that y = f(x) for exactly one $x \in X$? A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 5. Let $f: X \to Y$ be a function. Let y be an element of Y. What do we need to know about f to conclude that y = f(x) for at most one $x \in X$? A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 6. Let $f: X \to Y$ be a function. Let x be an element of X. What do we need to know about f to conclude that f(x) = y for exactly one $y \in Y$? A] Nothing: this is true for all functions f. B] We need f to be injective.

C] We need f to be surjective. D] We need f to be bijective.

Second problem.

Let X and Y be sets, and $\varphi \colon X \to Y$ a function. Suppose that W is a subset of X and Z is a subset of Y. Write the definitions of $\varphi(W)$ and of $\varphi^{-1}(Z)$.

Third problem.

Let A and B be sets, and let $f: A \to B$ be a function. Suppose that A' and A'' are subsets of A, and that B' is a subset of B. Are the following implications true or false? Prove or disprove them.

(1)
$$B' \subset f(A' \cap A'') \Rightarrow B' \subset f(A') \text{ and } B' \subset f(A'')$$
 TRUE | FALSE

(2)
$$B' \subset f(A')$$
 and $B' \subset f(A'') \Rightarrow B' \subset f(A' \cap A'')$ TRUE | FALSE