Math 330: Intro to Higher Math, Section 1, Spring 2009 - Project Assignment, due May 4

On the set $\mathbb{Z} \times(\mathbb{Z}-\{0\})$ define a relation \sim by declaring $(a, b) \sim(c, d)$ if and only if $a d=b c$.
Problem 1. Prove that \sim is an equivalence relation.
For all $(a, b),(c, d) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$ define $(a, b)+(c, d)=(a d+b c, b d)$ and $(a, b) \cdot(c, d)=(a c, b d)$.
Problem 2. Prove that if $\left(a_{1}, b_{1}\right) \sim\left(a_{2}, b_{2}\right)$ and $\left(c_{1}, d_{1}\right) \sim\left(c_{2}, d_{2}\right)$, then $\left(a_{1}, b_{1}\right)+\left(c_{1}, d_{1}\right) \sim\left(a_{2}, b_{2}\right)+\left(c_{2}, d_{2}\right)$ and $\left(a_{1}, b_{1}\right) \cdot\left(c_{1}, d_{1}\right) \sim\left(a_{2}, b_{2}\right) \cdot\left(c_{2}, d_{2}\right)$.

Let $[a, b]$ denote the equivalence class with respect to \sim of $(a, b) \in \mathbb{Z} \times(\mathbb{Z}-\{0\})$, and define \mathbf{Q} to be the set of equivalence classes of $\mathbb{Z} \times(\mathbb{Z}-\{0\})$.
For all $[a, b],[c, d] \in \mathbf{Q}$ define $[a, b]+[c, d]=[(a, b)+(c, d)]$ and $[a, b] \cdot[c, d]=[(a, b) \cdot(c, d)]$; these definitions make sense, i.e., they do not depend on the choice of representatives, because of problem 2
The following properties hold for all $[a, b],[c, d],[e, f] \in \mathbf{Q}$:
(i) $([a, b]+[c, d])+[e, f]=[a, b]+([c, d]+[e, f])$;
(ii) $[a, b]+[c, d]=[c, d]+[a, b]$;
(iii) $([a, b] \cdot[c, d]) \cdot[e, f]=[a, b] \cdot([c, d] \cdot[e, f])$;
(iv) $[a, b] \cdot[c, d]=[c, d] \cdot[a, b]$;
(v) $([a, b]+[c, d]) \cdot[e, f]=([a, b] \cdot[e, f])+([c, d] \cdot[e, f])$;
(vi) there exists $\mathbf{0} \in \mathbf{Q}$ such that for all $[a, b] \in \mathbf{Q}, \mathbf{0}+[a, b]=[a, b]$;
(vii) for every $[a, b] \in \mathbf{Q}$ there exists $-[a, b] \in \mathbf{Q}$ such that $-[a, b]+[a, b]=\mathbf{0}$;
(viii) there exists $\mathbf{1} \in \mathbf{Q}-\{\mathbf{0}\}$ such that for all $[a, b] \in \mathbf{Q}, \mathbf{1} \cdot[a, b]=[a, b]$;
(ix) for every $[a, b] \in \mathbf{Q}-\{\mathbf{0}\}$ there exists $[a, b]^{-1} \in \mathbf{Q}$ such that $[a, b]^{-1} \cdot[a, b]=\mathbf{1}$.

Problem 3. Prove properties (vi), (vii), (viii), and (ix) (notice that in particular you need to explicitly define $\left.\mathbf{0},-[a, b], \mathbf{1},[a, b]^{-1}\right)$. Prove also at least one of the remaining properties.
Problem 4. Among the properties (i)-(ix) above, which ones hold and which ones fail in $\mathbb{Z} \times(\mathbb{Z}-\{0\})$? Justify your answer.
For $[a, b],[c, d] \in \mathbf{Q}$ define $[a, b] \leq[c, d]$ if and only if ($b d>0$ and $a d \leq b c$) or ($b d<0$ and $a d \geq c b$).
Problem 5. Prove that the above definition of \leq does not depend on the choice of representatives.
Problem 6. Prove that the following properties hold for all $[a, b],[c, d],[e, f] \in \mathbf{Q}$:
(a) $[a, b] \leq[c, d]$ or $[c, d] \leq[a, b]$;
(b) if $[a, b] \leq[c, d]$ and $[c, d] \leq[a, b]$, then $[a, b]=[c, d]$;
(c) if $[a, b] \leq[c, d]$ and $[c, d] \leq[e, f]$, then $[a, b] \leq[e, f]$.

Problem 7. Define a function $f: \mathbb{Z} \rightarrow \mathbf{Q}$ satisfying the following properties:
(A) $f(0)=\mathbf{0}$ and $f(1)=\mathbf{1}$;
(B) for all $m, n \in \mathbb{Z}, f(m+n)=f(m)+f(n), f(m \cdot n)=f(m) \cdot f(n)$, and if $m \leq n$ then $f(m) \leq f(n)$;
(C) for all $[a, b] \in \mathbf{Q}$ there exists $n \in \mathbb{N}$ such that $[a, b] \leq f(n)$.

Prove also that f is injective but not surjective.

