Math 330: Intro to Higher Math, Section 1, Spring 2009 — Project Assignment, due May 4

On the set $\mathbb{Z} \times (\mathbb{Z} - \{0\})$ define a relation ~ by declaring $(a, b) \sim (c, d)$ if and only if ad = bc.

Problem 1. Prove that \sim is an equivalence relation.

For all $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ define (a, b) + (c, d) = (ad + bc, bd) and $(a, b) \cdot (c, d) = (ac, bd)$.

Problem 2. Prove that if $(a_1, b_1) \sim (a_2, b_2)$ and $(c_1, d_1) \sim (c_2, d_2)$, then $(a_1, b_1) + (c_1, d_1) \sim (a_2, b_2) + (c_2, d_2)$ and $(a_1, b_1) \cdot (c_1, d_1) \sim (a_2, b_2) \cdot (c_2, d_2)$.

Let [a, b] denote the equivalence class with respect to \sim of $(a, b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$, and define **Q** to be the set of equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\})$.

For all $[a, b], [c, d] \in \mathbf{Q}$ define [a, b] + [c, d] = [(a, b) + (c, d)] and $[a, b] \cdot [c, d] = [(a, b) \cdot (c, d)]$; these definitions make sense, i.e., they do not depend on the choice of representatives, because of problem 2.

The following properties hold for all $[a, b], [c, d], [e, f] \in \mathbf{Q}$:

- (i) ([a,b] + [c,d]) + [e,f] = [a,b] + ([c,d] + [e,f]);
- (ii) [a,b] + [c,d] = [c,d] + [a,b];
- (iii) $([a,b] \cdot [c,d]) \cdot [e,f] = [a,b] \cdot ([c,d] \cdot [e,f]);$
- (iv) $[a,b] \cdot [c,d] = [c,d] \cdot [a,b];$
- (v) $([a,b] + [c,d]) \cdot [e,f] = ([a,b] \cdot [e,f]) + ([c,d] \cdot [e,f]);$
- (vi) there exists $\mathbf{0} \in \mathbf{Q}$ such that for all $[a, b] \in \mathbf{Q}$, $\mathbf{0} + [a, b] = [a, b]$;
- (vii) for every $[a, b] \in \mathbf{Q}$ there exists $-[a, b] \in \mathbf{Q}$ such that $-[a, b] + [a, b] = \mathbf{0}$;
- (viii) there exists $\mathbf{1} \in \mathbf{Q} \{\mathbf{0}\}$ such that for all $[a, b] \in \mathbf{Q}, \mathbf{1} \cdot [a, b] = [a, b];$
- (ix) for every $[a, b] \in \mathbf{Q} \{\mathbf{0}\}$ there exists $[a, b]^{-1} \in \mathbf{Q}$ such that $[a, b]^{-1} \cdot [a, b] = \mathbf{1}$.

Problem 3. Prove properties (vi), (vii), (viii), and (ix) (notice that in particular you need to explicitly define $\mathbf{0}, -[a, b], \mathbf{1}, [a, b]^{-1}$). Prove also at least one of the remaining properties.

Problem 4. Among the properties (i)–(ix) above, which ones hold and which ones fail in $\mathbb{Z} \times (\mathbb{Z} - \{0\})$? Justify your answer.

For $[a, b], [c, d] \in \mathbf{Q}$ define $[a, b] \leq [c, d]$ if and only if $(bd > 0 \text{ and } ad \leq bc)$ or $(bd < 0 \text{ and } ad \geq cb)$.

Problem 5. Prove that the above definition of \leq does not depend on the choice of representatives.

Problem 6. Prove that the following properties hold for all $[a, b], [c, d], [e, f] \in \mathbf{Q}$:

(a) $[a,b] \le [c,d]$ or $[c,d] \le [a,b]$;

(b) if $[a, b] \leq [c, d]$ and $[c, d] \leq [a, b]$, then [a, b] = [c, d];

(c) if $[a,b] \leq [c,d]$ and $[c,d] \leq [e,f]$, then $[a,b] \leq [e,f]$.

Problem 7. Define a function $f: \mathbb{Z} \to \mathbf{Q}$ satisfying the following properties:

(A) f(0) = 0 and f(1) = 1;

(B) for all $m, n \in \mathbb{Z}$, f(m+n) = f(m) + f(n), $f(m \cdot n) = f(m) \cdot f(n)$, and if $m \le n$ then $f(m) \le f(n)$; (C) for all $[a,b] \in \mathbf{Q}$ there exists $n \in \mathbb{N}$ such that $[a,b] \le f(n)$.

Prove also that f is injective but not surjective.