Math 330: Intro to Higher Math, Section 1, Spring 2009 - Homework \# 13, due March 25

Definition. Let n be an integer greater than 1 , i.e., $n \in \mathbb{Z}$ and $n>1$. We say that n is prime (or equivalently that n is a prime number) if n is only divisible by $1,-1, n$, and $-n$.

Lemma 1. Let $n \in \mathbb{Z}$ and $n>1$. If n is not prime then there exist $x, y \in \mathbb{N}$ such that $1<x<n, 1<y<n$, and $n=x y$.

Proposition 2. Every integer greater than 1 is either a prime or a product of primes.
Hint. Use strong induction and lemma 1 .
Theorem 3. There are infinitely many prime numbers.
Hint. If there were only finitely many prime numbers, say $p_{1}, p_{2}, \ldots, p_{s}$, then $n=p_{1} p_{2} \cdots p_{s}+1$ would contradict proposition 2 .

Problem 4. Given any finite set of primes, the proof of theorem 3 provides a method for finding primes that do not belong to the given set.
(1) Use this method to find a prime different from 2, 3, 5, and 7.
(2) Use this method to find a prime different from 2, 5, and 11.

Proposition 5. For every $m, n \in \mathbb{N}$ there exists $d \in \mathbb{N}$ such that:
(1) d divides m and d divides n;
(2) for all $c \in \mathbb{Z}$, if c divides m and c divides n, then c divides d and $c \leq d$.

The natural number d is called the greatest common divisor of m and n and is denoted $\operatorname{gcd}(m, n)$.
Hint. Consider $A=\{a \in \mathbb{N} \mid \exists x, y \in \mathbb{Z}$ s.t. $a=m x+n y\}$. Verify that A is not empty. So, by the wellordering principle, A has a least element. Define d to be the least element of A.

In order to prove that d divides m, apply the division theorem to get $m=d q+r$ with $0 \leq r<d$; now use the fact that d is the least element of A to conclude that $r=0$, i.e., that d divides m.

Theorem 6 (Euclid's Lemma). Let m and n be natural numbers and p be a prime. If p divides mn then p divides m or p divides n.

Hint. Apply proposition 5 to m and p, and consider $d=\operatorname{gcd}(m, p)$. Given that p is prime, what can d possibly be?

Corollary 7. Let $s \in \mathbb{N}$, and let $n_{1}, n_{2}, \ldots, n_{s}$ be natural numbers and p be a prime. If p divides $n_{1} n_{2} \cdots n_{s}$ then p divides n_{i} for some i with $1 \leq i \leq s$.
Hint. Use induction on s and theorem 6.
Proposition 8. Let $s, t \in \mathbb{N}$, and let $p_{1}, p_{2}, \ldots, p_{s}$ and $q_{1}, q_{2}, \ldots, q_{t}$ be primes such that $p_{1} \leq p_{2} \leq \ldots \leq p_{s}$ and $q_{1} \leq q_{2} \leq \ldots \leq q_{t}$. If $p_{1} p_{2} \cdots p_{s}=q_{1} q_{2} \cdots q_{t}$ then $s=t$ and for all i with $1 \leq i \leq s=t$ we have $p_{i}=q_{i}$.

Notice that in particular proposition 8 implies that the factorization in proposition 2 is unique.
Hint. Use induction on either s or t and corollary 7.
Lemma 9. Let p be a prime and j be an integer such that $0<j<p$. Then p divides $\binom{p}{j}$.
Hint. Use corollary 7
Theorem 10 (Fermat's Little Theorem). For every prime p and every natural number n, p divides $n^{p}-n$.
Hint. Fix p and use induction on n, the binomial theorem, and lemma 9.
Problem 11. Show that the conclusion of theorem 10 is false if p is not a prime.
Corollary 12. For every prime p and every natural number n, if $\operatorname{gcd}(p, n)=1$ then p divides $n^{p-1}-1$.
Problem 13. Show that the conclusion of corollary 12 is false if $\operatorname{gcd}(p, n) \neq 1$.

