Math 330: Intro to Higher Math, Section 1, Spring 2009 — Homework # 13, due March 25

Definition. Let n be an integer greater than 1, i.e., $n \in \mathbb{Z}$ and n > 1. We say that n is prime (or equivalently that n is a prime number) if n is only divisible by 1, -1, n, and -n.

Lemma 1. Let $n \in \mathbb{Z}$ and n > 1. If n is not prime then there exist $x, y \in \mathbb{N}$ such that 1 < x < n, 1 < y < n, and n = xy.

Proposition 2. Every integer greater than 1 is either a prime or a product of primes.

Hint. Use strong induction and lemma 1.

Theorem 3. There are infinitely many prime numbers.

Hint. If there were only finitely many prime numbers, say p_1, p_2, \ldots, p_s , then $n = p_1 p_2 \cdots p_s + 1$ would contradict proposition 2.

Problem 4. Given any finite set of primes, the proof of theorem 3 provides a method for finding primes that do not belong to the given set.

- (1) Use this method to find a prime different from 2, 3, 5, and 7.
- (2) Use this method to find a prime different from 2, 5, and 11.

Proposition 5. For every $m, n \in \mathbb{N}$ there exists $d \in \mathbb{N}$ such that:

- (1) d divides m and d divides n;
- (2) for all $c \in \mathbb{Z}$, if c divides m and c divides n, then c divides d and $c \leq d$.

The natural number d is called the greatest common divisor of m and n and is denoted gcd(m, n).

Hint. Consider $A = \{a \in \mathbb{N} \mid \exists x, y \in \mathbb{Z} \text{ s.t. } a = mx + ny \}$. Verify that A is not empty. So, by the well-ordering principle, A has a least element. Define d to be the least element of A.

In order to prove that d divides m, apply the division theorem to get m = dq + r with $0 \le r < d$; now use the fact that d is the least element of A to conclude that r = 0, i.e., that d divides m.

Theorem 6 (Euclid's Lemma). Let m and n be natural numbers and p be a prime. If p divides mn then p divides m or p divides n.

Hint. Apply proposition 5 to m and p, and consider d = gcd(m, p). Given that p is prime, what can d possibly be?

Corollary 7. Let $s \in \mathbb{N}$, and let n_1, n_2, \ldots, n_s be natural numbers and p be a prime. If p divides $n_1n_2 \cdots n_s$ then p divides n_i for some i with $1 \le i \le s$.

Hint. Use induction on s and theorem 6.

Proposition 8. Let $s, t \in \mathbb{N}$, and let p_1, p_2, \ldots, p_s and q_1, q_2, \ldots, q_t be primes such that $p_1 \leq p_2 \leq \ldots \leq p_s$ and $q_1 \leq q_2 \leq \ldots \leq q_t$. If $p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t$ then s = t and for all i with $1 \leq i \leq s = t$ we have $p_i = q_i$.

Notice that in particular proposition 8 implies that the factorization in proposition 2 is unique.

Hint. Use induction on either s or t and corollary 7.

Lemma 9. Let p be a prime and j be an integer such that 0 < j < p. Then p divides $\binom{p}{i}$.

Hint. Use corollary 7.

Theorem 10 (Fermat's Little Theorem). For every prime p and every natural number n, p divides $n^p - n$.

Hint. Fix p and use induction on n, the binomial theorem, and lemma 9.

Problem 11. Show that the conclusion of theorem 10 is false if p is not a prime.

Corollary 12. For every prime p and every natural number n, if gcd(p,n) = 1 then p divides $n^{p-1} - 1$.

Problem 13. Show that the conclusion of corollary 12 is false if $gcd(p,n) \neq 1$.

 \square