Name: \qquad

I	II	III	IV	V	VI	VII	TOTAL
11	10	14	23	14	14	14	100

I. Let X, Y, and Z be statements.

Are the following statements equivalent to "If X is true, then Y is true or Z is true"? Please circle your answers.

1] If X is true and Y is false, then Z is true. .. ${ }^{\text {I }}$
2] If X is true and Z is false, then Y is true. .. no
3] If Y is false and Z is false, then X is false. ...

4] If Y is false or Z is false, then X is false. ... no
5] If Y is true or Z is true, then X is true. .. No
6] If X is true, then Y is true and Z is true. ... no
7] If X is false, then Y is false and Z is false. .. no
8] If X is false, then Y is false or Z is false. ... no

9] X is false or Y is true or Z is true. .. No
10] X is true and Y is true and Z is true. ... no

11] X is true and Y is true, or X is true and Z is true. ... ${ }^{\text {Yes }}$
II. For each of the following five questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!

II/1. Let $f: X \rightarrow Y$ be a function. Let x and x^{\prime} be elements of X such that $f(x)=f\left(x^{\prime}\right)$.
What do we need to know about f to conclude that $x=x^{\prime}$? \qquad
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/2. Let $f: X \rightarrow Y$ be a function. Let x and x^{\prime} be elements of X such that $x=x^{\prime}$.
What do we need to know about f to conclude that $f(x)=f\left(x^{\prime}\right)$? \qquad
\square
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/3. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.
What do we need to know about f to conclude that $y=f(x)$ for some $x \in X ? \ldots \ldots \ldots \ldots . \square$
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/4. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.
What do we need to know about f to conclude that $y=f(x)$ for exactly one $x \in X ? \ldots$. \square
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.

II/5. Let $f: X \rightarrow Y$ be a function. Let y be an element of Y.
What do we need to know about f to conclude that $y=f(x)$ for at most one $x \in X$? \square
A] Nothing: this is true for all functions f.
B] We need f to be injective.
C] We need f to be surjective.
D] We need f to be bijective.
III. Let a and b be integers, i.e., $a, b \in \mathbb{Z}$.

III/1. What exactly does it mean to say that " a is divisible by b ", or equivalently that " b divides a "?

III/2. Is it true or false that for every natural number $n \in \mathbb{N}, 6^{n}$ is not divisible by 5 ? \ldots. Prove your claim.
IV. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of real numbers.

IV/1. What exactly does it mean to say that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent?

IV/2. Prove the following statement: If $\left(x_{n}\right)_{n \in \mathbb{N}}$ is convergent, then for every $\varepsilon \in \mathbb{R}_{>0}$ there exists an $N \in \mathbb{N}$ such that for all $m, n \in \mathbb{N}$, if $m \geq N$ and $n \geq N$ then $\left|x_{m}-x_{n}\right|<\varepsilon$.

IV/3. What is the contrapositive of the statement in IV/2?

IV/4. Use IV $/ 3$ to show that the sequence $x_{n}=(-1)^{n}$ is divergent.
V. For each natural number $n \in \mathbb{N}$, define $x_{n}=\sum_{j=1}^{n} \frac{1}{j^{2}}$.
$\mathrm{V} / 1$. Prove that for all $n \in \mathbb{N}, x_{n} \leq 2-\frac{1}{n}$.
$\mathrm{V} / 2$. Does the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ defined above converge in \mathbb{R} ? ... Prove your claim.
VI. VI/1. Define a relation \sim on the set of real numbers \mathbb{R} as follows: for all $x, y \in \mathbb{R}$, declare $x \sim y$ if and only if $x-y \in \mathbb{Z}$. Is \sim an equivalence relation? $\ldots \ldots \ldots$. Prove your claim.
$\mathrm{VI} / 2$. More generally, let A be a subset of \mathbb{R} and define a relation \sim on \mathbb{R} by declaring $x \sim y$ if and only if $x-y \in A$. What conditions must A satisfy in order for \backsim to be an equivalence relation?
VII. Suppose that you have a set A and a subset $B \subseteq A$ such that $B \neq A$.

VII/1. What exactly do these conditions mean?
$B \subseteq A$
$B \neq A$

VII/2. Given A and B satisfying the above conditions, is it possible for A and B to have the same cardinality, i.e., $A \simeq B$?

\qquad
A] No, it is not possible for any A.
B] Yes, it is possible for any A.
C] Yes, but only if A is empty.
D] Yes, but only if A is not empty.
E] Yes, but only if A is finite.
F] Yes, but only if A is infinite.
G] Yes, but only if A is countable.
$\mathrm{H}]$ Yes, but only if A is uncountable.
VII/3. Prove that your answer to VII/2 is correct.

