Math 330:	Introduction t	to Higher	Math,	Section	1, Spring	2009	 Final	Exam,	May 1	11
Name:							 			

I	II	III	IV	V	VI	VII	TOTAL
11	10	14	23	14	14	14	100

I. Let X, Y, and Z be statements.

Are the following statements equivalent to "If X is true, then Y is true or Z is true"? Please circle your answers.

1] If X is true and Y is false, then Z is true	YES	NO
2] If X is true and Z is false, then Y is true	YES	NO
3] If Y is false and Z is false, then X is false	YES	NO
4] If Y is false or Z is false, then X is false	YES	NO
5] If Y is true or Z is true, then X is true	YES	NO
6] If X is true, then Y is true and Z is true	YES	NO
7] If X is false, then Y is false and Z is false	YES	NO
8] If X is false, then Y is false or Z is false	YES	NO
9] X is false or Y is true or Z is true	YES	NO
10] X is true and Y is true and Z is true	YES	NO
11] X is true and Y is true, or X is true and Z is true	YES	NO

II.	For each of the following five questions, four possible answers are provided, but only one of them is correct: write the corresponding letter in the box!							
	I/1. Let $f: X \to Y$ be a function. Let x and x' be elements of X such that $f(x) = f(x')$. What do we need to know about f to conclude that $x = x'$?							
	I/2. Let $f: X \to Y$ be a function. Let x and x' be elements of X such that $x = x'$. What do we need to know about f to conclude that $f(x) = f(x')$?							
	I/3. Let $f: X \to Y$ be a function. Let y be an element of Y . What do we need to know about f to conclude that $y = f(x)$ for some $x \in X$?							
	I/4. Let $f: X \to Y$ be a function. Let y be an element of Y . What do we need to know about f to conclude that $y = f(x)$ for exactly one $x \in X$? A] Nothing: this is true for all functions f . B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective.							
	 I/5. Let f: X → Y be a function. Let y be an element of Y. What do we need to know about f to conclude that y = f(x) for at most one x ∈ X? A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 							

III.	Let a a	and b be integ	ers, i.e., a, b	$\in \mathbb{Z}.$					
	III/1.	What exactly	does it mear	n to say tha	t "a is divis	ible by b ", or	r equivalently	that "b o	divides a"?
	III/2.	Is it true or fa	alse that for e	every natura	al number n	$\in \mathbb{N}, 6^n \text{ is n}$	ot divisible by	y 5?	

Prove your claim.

IV. Let $(x_n)_{n\in\mathbb{N}}$ be a sequence of real numbers.

IV/1. What exactly does it mean to say that $(x_n)_{n\in\mathbb{N}}$ is convergent?

IV/2. Prove the following statement: If $(x_n)_{n\in\mathbb{N}}$ is convergent, then for every $\varepsilon\in\mathbb{R}_{>0}$ there exists an $N\in\mathbb{N}$ such that for all $m,n\in\mathbb{N}$, if $m\geq N$ and $n\geq N$ then $|x_m-x_n|<\varepsilon$.

IV/3. What is the contrapositive of the statement in IV/2?

IV/4. Use IV/3 to show that the sequence $x_n = (-1)^n$ is divergent.

- V. For each natural number $n \in \mathbb{N}$, define $x_n = \sum_{j=1}^n \frac{1}{j^2}$.
 - V/1. Prove that for all $n \in \mathbb{N}$, $x_n \leq 2 \frac{1}{n}$.

V/2. Does the sequence $(x_n)_{n\in\mathbb{N}}$ defined above converge in \mathbb{R} ?

VI.	VI/1.	Define a relation \sim on the set of real numbers $\mathbb R$ as follows: for all $x,y\in\mathbb R$, declare x	$\sim y$ if and
		only if $x - y \in \mathbb{Z}$. Is \sim an equivalence relation?	
		Prove your claim.	

VI/2. More generally, let A be a subset of $\mathbb R$ and define a relation \backsim on $\mathbb R$ by declaring $x \backsim y$ if and only if $x-y \in A$. What conditions must A satisfy in order for \backsim to be an equivalence relation?

VII.	Suppos	e that you have a set A and a subset $B \subseteq A$ such that $B \neq A$.
	VII/1.	What exactly do these conditions mean?
		$B \subseteq A$

 $B \neq A$

VII/2.	Given A and B satisfying the above conditions, is it possible for A and B to have the satisfying the above conditions.	me
	cardinality, i.e., $A \simeq B$?	

- A] No, it is not possible for any A.
- B] Yes, it is possible for any A.
- C] Yes, but only if A is empty.
- D] Yes, but only if A is not empty.
- [E] Yes, but only if A is finite.
- F] Yes, but only if A is infinite.
- G Yes, but only if A is countable.
- H] Yes, but only if A is uncountable.
- $\mathrm{VII}/3$. Prove that your answer to $\mathrm{VII}/2$ is correct.