Name: \qquad

I	II	III	IV $/ 1$	IV $/ 2$	V	$\mathrm{VI} / 1$	$\mathrm{VI} / 2$	TOTAL
10	10	12	4	20	20	4	20	100

I. For each of the following three questions, seven possible answers are provided, but only one of them is correct: write the corresponding letter in the box!
The symbols X, Y, and Z represent here arbitrary statements.
I/1. If you know that X implies Y, then you can also conclude that: \square
A] X is true, and Y is also true.
B] X cannot be false.
C] Y cannot be false.
D] At least one of X and Y is true.
E] If Y is true, then X is true.
F] If Y is false, then X is false.
G] If X is false, then Y is false.

I/2. Which of the following strategies is not a valid way to show that " X implies Y "? \square
A] Assume that X is true, and then use this to show that Y is true.
B] Assume that Y is false, and then use this to show that X is false.
C] Show that either X is false, or Y is true, or both.
D] Assume that X is true and Y is false, and deduce a contradiction.
E] Assume that X is false and Y is true, and deduce a contradiction.
F] Show that X implies some intermediate statement Z, and then show that Z implies Y.
G] Show that some intermediate statement Z implies Y, and then show that X implies Z.

I/3. If you want to disprove the claim that " X implies Y^{\prime} ", you need to show" ${ }^{\text {| }}$ that: \square
A] Y is true, but X is false.
B] X is true, but Y is false.
C] X is false.
D] Y is false.
E] Both X and Y are false.
F] Exactly one of X and Y is false.
G] At least one of X and Y is false.

[^0]II. Consider the statement $X=$ "If I am taking Math 330, then I love math or I am a masochist".

II/1. What is the contrapositive of X ?

II/2. What is the negation of X ?

II/3. Is X logically equivalent to the statement "If I am taking Math 330 and I do not love math, then I am a masochist"? Answer Yes or NO. .. \square
III. What are the negations of the following statements? III/1. Math 330 is fun and not hard.

III/2. For all real numbers x and y, if $x<y$ then there exists a rational number q such that $x<q<y$.

III/3. n is even if and only if n^{2} is even.
IV. Let k and n be integers, i.e., $k, n \in \mathbb{Z}$.

IV/1. What exactly does it mean to say that " k is divisible by n ", or equivalently that " n divides k "?

IV/2. Is -2 divisible by 3 ? Carefully justify your answer.
V. Recall that an integer $n \in \mathbb{Z}$ is called even if it is divisible by 2 , and it is called odd if it is not even. Recall also that we already proved that n is odd if and only if there exists an even integer e such that $n=e+1$.

Prove that for all integers m and $n, m n$ is even if and only if at least one of m and n is even.
VI. A sequence $a_{1}, a_{2}, a_{3}, \ldots$ of integers is defined recursively as follows:

- $a_{1}=0$;
- For each $n \in \mathbb{N}, a_{n+1}=2 a_{n}+n$.
$\mathrm{VI} / 1$. Compute a_{2}, a_{3}, a_{4}, and a_{5}.

a_{2}	a_{3}	a_{4}	a_{5}

$\mathrm{VI} / 2$. Prove that for all $n \in \mathbb{N}, a_{n}=2^{n}-n-1$.

[^0]: *Beware of the difference between "you need to show ..." and "in certain cases, but not in general, it would be enough to show ..."! Problem I is taken from a quiz by Terence Tao at http://scherk.pbwiki.com/

