Name: \qquad

For each of the following ten questions, seven possible answers are provided, but only one of them is correct: circle the corresponding letter!
The symbols X, Y, and Z are used below to represent statements (e.g., "These pretzels are making me thirsty"); the symbol $P(n)$ denotes a property about some integer n (e.g., " n is odd"), and similarly $Q(n, m)$ denotes a property about two integers n and m (e.g., " n is divisible by m ").

1. If you know that X implies Y, then you can also conclude that:

A] X is true, and Y is also true.
B] X cannot be false.
C] Y cannot be false.
D] At least one of X and Y is true.
E] If Y is true, then X is true.
F] If Y is false, then X is false.
G] If X is false, then Y is false.
2. Which of the following strategies is not a valid way to show that " X implies Y "?

A] Assume that X is true, and then use this to show that Y is true.
B] Assume that Y is false, and then use this to show that X is false.
C] Show that either X is false, or Y is true, or both.
D] Assume that X is true and Y is false, and deduce a contradiction.
E] Assume that X is false and Y is true, and deduce a contradiction.
F] Show that X implies some intermediate statement Z, and then show that Z implies Y.
G] Show that some intermediate statement Z implies Y, and then show that X implies Z.
3. If you want to disprove the claim that " X implies Y ", you need to show ${ }^{*}$ that:

A] Y is true, but X is false.
B] X is true, but Y is false.
C] X is false.
D] Y is false.
E] Both X and Y are false.
F] Exactly one of X and Y is false.
G] At least one of X and Y is false.
4. If you want to disprove the claim that "Both X and Y are true", you need to show that:

A] X does not imply Y, and Y does not imply X.
B] X is true if and only if Y is false.
C] X is false.
D] Y is false.
E] Both X and Y are false.
F] Exactly one of X and Y is false.
G] At least one of X and Y is false.
5. If you want to disprove the claim that "At least one of X and Y is true", you need to show that:

A] X does not imply Y, and Y does not imply X.
B] X is true if and only if Y is false.
C] X is false.
D] Y is false.
E] Both X and Y are false.
F] Exactly one of X and Y is false.
G] At least one of X and Y is false.

[^0]6. If you want to disprove the claim that "For all integers $n, P(n)$ is true", you need to:

A] Show that there exists an integer n for which $P(n)$ is false.
B] Show that there exists an n which is not an integer, but for which $P(n)$ is still true.
C] Show that for all integers $n, P(n)$ is false.
D] Show that for all integers $n, P(n)$ is true.
E] Show that $P(n)$ being true does not necessarily imply that n is an integer.
F] Assume there exists an integer n for which $P(n)$ is true, and derive a contradiction.
G] Show that for every integer n, there exists an integer m not equal to n for which $P(m)$ is true.
7. If you want to disprove the claim that "For some integer $n, P(n)$ is true", you need to:

A] Show that there exists an integer n for which $P(n)$ is false.
B] Show that there exists an n which is not an integer, but for which $P(n)$ is still true.
C] Show that for all integers $n, P(n)$ is false.
D] Show that for all integers $n, P(n)$ is true.
E] Show that $P(n)$ being true does not necessarily imply that n is an integer.
F] Assume that for every integer $n, P(n)$ is true, and derive a contradiction.
G] Show that for every integer n, there exists an integer m not equal to n for which $P(m)$ is true.
8. If you want to prove the claim that "For every integer n, there exists an integer m such that $Q(n, m)$ is true", you need to do the following:
A] Let n and m be arbitrary integers. Then show that $Q(n, m)$ is true.
B] Find an integer n and an integer m such that $Q(n, m)$ is true.
C] Let n be an arbitrary integer. Then find an integer m (possibly depending on n) such that $Q(n, m)$ is true.
D] Let m be an arbitrary integer. Then find an integer n (possibly depending on m) such that $Q(n, m)$ is true.
E] Find an integer n such that $Q(n, m)$ is true for every integer m.
F] Find an integer m such that $Q(n, m)$ is true for every integer n.
G] Show that whenever $Q(n, m)$ is true, then n and m are integers.
9. If you want to disprove the claim that "For every integer n, there exists an integer m such that $Q(n, m)$ is true", you need to show that:
A] There exists an integer n such that for all integers $m, Q(n, m)$ is false.
B] There exist integers n and m such that $Q(n, m)$ is false.
C] For every integer n and every integer $m, Q(n, m)$ is false.
D] For every integer n, there exists an integer m such that $Q(n, m)$ is false.
E] For every integer m, there exists an integer n such that $Q(n, m)$ is false.
$\mathrm{F}]$ There exists an integer m such that for all integers $n, Q(n, m)$ is false.
G] If $Q(n, m)$ is true, then n and m are not integers.
10. If you want to disprove the claim that "There exists an integer n such that for all integers $m, Q(n, m)$ is true", you need to show that:
A] There exists an integer n such that for all integers $m, Q(n, m)$ is false.
B] There exist integers n and m such that $Q(n, m)$ is false.
C] For every integer n and every integer $m, Q(n, m)$ is false.
D] For every integer n, there exists an integer m such that $Q(n, m)$ is false.
E] For every integer m, there exists an integer n such that $Q(n, m)$ is false.
F] There exists an integer m such that for all integers $n, Q(n, m)$ is false.
G] If $Q(n, m)$ is true, then n and m are not integers.

Adapted from a quiz by Terence Tao at http://scherk.pbwiki.com/.

[^0]: *Beware of the difference between "you need to do ..." and "in certain cases, but not in general, it would be enough to do ..."!

