AMAT $327(Z)$: Elem	entary Abstract Algeb	ora, Spring 2011	Midterm E	xam, March 21
Name:				

1] Let X and Y be sets, and let $f: X \to Y$ be a function. Please complete the following definitions: A] We say that f is *injective* if

B] We say that f is *surjective* if

- 2] Let X, Y, and Z be sets, and let $f: X \to Y$ and $g: Y \to Z$ be functions. Assume that the composition $g \circ f$ is injective.
 - A] Is it true or false that then f must be injective? Prove it or disprove it!

B] Is it true or false that then g must be injective? Prove it or disprove it!

3] Please complete the following definitions.

A] A group is a set G together with an operation * satisfying the following axioms:

B] A group G is called *abelian* if

C] If G is a group and a is an element of G then the cyclic subgroup generated by a is the subgroup

(a) =

4] Consider a set S and let G be the set of all functions f: S → R from S to the set R of all real numbers. We can define an operation * on G as follows: given f: S → R and g: S → R we define f * g: S → R to be the function (f * g)(s) = f(s) · g(s), where on the right-hand side · is multiplication of real numbers. Is it true or false that G with respect to this operation * is a group? State explicitly which group axioms hold and which ones (if any) fail.

5] Prove by induction that if a and b are elements of an abelian group G then for every positive integer $n \ge 1$ we have $(ab)^n = a^n b^n$. 6] Consider a group G, a subgroup H of G, and an element $g \in G$. Define the subset H^g of G as follows: $H^g = \left\{ g^{-1}hg \mid h \in H \right\}.$

Prove that H^g is a subgroup of G.

- 7] Consider the group U_{99} .
 - A] Find explicitly the number of elements in U_{99} .

B] Is [40] an element of U_{99} ? Explain your answer, and if your answer is 'Yes' then compute the inverse of [40] in U_{99} and express it as [a] with 0 < a < 99.

C] Using your answer to the previous question, find explicitly the inverse of [59] in U_{99} without using the extended Euclidean algorithm.