Name: \qquad
1] Let X and Y be sets, and let $f: X \rightarrow Y$ be a function. Please complete the following definitions: A] We say that f is injective if

B] We say that f is surjective if

2] Let X, Y, and Z be sets, and let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Assume that the composition $g \circ f$ is injective.
A] Is it true or false that then f must be injective? Prove it or disprove it!

B] Is it true or false that then g must be injective? Prove it or disprove it!

3] Please complete the following definitions.
A] A group is a set G together with an operation $*$ satisfying the following axioms:

B] A group G is called abelian if

C] If G is a group and a is an element of G then the cyclic subgroup generated by a is the subgroup
$(a)=$

4] Consider a set S and let G be the set of all functions $f: S \rightarrow \mathbb{R}$ from S to the set \mathbb{R} of all real numbers. We can define an operation $*$ on G as follows: given $f: S \rightarrow \mathbb{R}$ and $g: S \rightarrow \mathbb{R}$ we define $f * g: S \rightarrow \mathbb{R}$ to be the function $(f * g)(s)=f(s) \cdot g(s)$, where on the right-hand side \cdot is multiplication of real numbers. Is it true or false that G with respect to this operation $*$ is a group? State explicitly which group axioms hold and which ones (if any) fail.

5] Prove by induction that if a and b are elements of an abelian group G then for every positive integer $n \geq 1$ we have $(a b)^{n}=a^{n} b^{n}$.

6] Consider a group G, a subgroup H of G, and an element $g \in G$. Define the subset H^{g} of G as follows:

$$
H^{g}=\left\{g^{-1} h g \mid h \in H\right\}
$$

Prove that H^{g} is a subgroup of G.

7] Consider the group U_{99}.
A] Find explicitly the number of elements in U_{99}.

B] Is [40] an element of U_{99} ? Explain your answer, and if your answer is 'Yes' then compute the inverse of [40] in U_{99} and express it as [a] with $0<a<99$.

C] Using your answer to the previous question, find explicitly the inverse of [59] in U_{99} without using the extended Euclidean algorithm.

