AMAT 327(Z): Elementary Abstract Algebra, Sp	pring 2011 Quiz $\#$ 6, February 14
Name:	
For each of the following six questions, four possible answ write the corresponding letter in the box!	wers are provided, but only one of them is correct:
 Let f: X → Y be a function. Let x and x' be elements What do we need to know about f to conclude that f(A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 	
 2] Let f: X → Y be a function. Let x and x' be elements What do we need to know about f to conclude that x = A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 	
 3] Let f: X → Y be a function. Let x and x' be elements What do we need to know about f to conclude that x = A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 	
 4] Let f: X → Y be a function. Let y be an element of Y. What do we need to know about f to conclude that y = A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 	
 5] Let f: X → Y be a function. Let y be an element of Y What do we need to know about f to conclude that y = A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 	
 6] Let f: X → Y be a function. Let x be an element of X. What do we need to know about f to conclude that f(A] Nothing: this is true for all functions f. B] We need f to be injective. C] We need f to be surjective. D] We need f to be bijective. 	